If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-24x=80=0
We move all terms to the left:
x^2-24x-(80)=0
a = 1; b = -24; c = -80;
Δ = b2-4ac
Δ = -242-4·1·(-80)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{14}}{2*1}=\frac{24-8\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{14}}{2*1}=\frac{24+8\sqrt{14}}{2} $
| 4(x+1)=–16 | | 15-3x+3=6x-18 | | 1.4k=2.52$ | | $1.4k=2.52$ | | 0,412=0,0324x+0,0322 | | d+90=13(6-d)+14d+12 | | 16x²-8x=1 | | 0,377=0,0324x+0,0322 | | 2/3m-3/2m=1/12 | | 12x²+4x².2-3x=5x+2 | | 2x-2=8x+12 | | Y2-21y+140=0 | | 0,862=0,0324x+0,0322 | | (2x-2)=(8x+12) | | 6p-10=2p+2 | | 2(x+3)+4(5-x)=16 | | (2x+1)(x-2)=0. | | -2x+11=-2x-11 | | 10+6*4=b | | 3×(-6/7)+2y=6 | | -2x2-2+6x=0 | | 6g+1=4g+1 | | .5x=7/5-8/7 | | 4(v+3)=6v+4 | | 50+3x+10=180 | | 1/2x=7/5-8/7 | | (4x^2-24)=(3x^2-5x) | | 50+(3x+10)=180 | | 6-8n+4n=11-77 | | 621×538=a | | 9-3(x-2)=3(5-x) | | X/4+5=x/8+10 |